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Aims To develop an artificial intelligence-based approach with multi-labelling capability to identify both ST-elevation
myocardial infarction (STEMI) and 12 heart rhythms based on 12-lead electrocardiograms (ECGs).

...................................................................................................................................................................................................
Methods
and results

We trained, validated, and tested a long short-term memory (LSTM) model for the multi-label diagnosis of 13 ECG
patterns (STEMIþ 12 rhythm classes) using 60 537 clinical ECGs from 35 981 patients recorded between 15
January 2009 and 31 December 2018. In addition to the internal test above, we conducted a real-world external
test, comparing the LSTM model with board-certified physicians of different specialties using a separate dataset of
308 ECGs covering all 13 ECG diagnoses. In the internal test, the area under the curves (AUCs) of the LSTM
model in classifying the 13 ECG patterns ranged between 0.939 and 0.999. For the external test, the LSTM model
for multi-labelling of the 13 ECG patterns evaluated by AUC was 0.987 ± 0.021, which was superior to those of
cardiologists (0.898 ± 0.113, P < 0.001), emergency physicians (0.820 ± 0.134, P < 0.001), internists (0.765 ± 0.155,
P < 0.001), and a commercial algorithm (0.845 ± 0.121, P < 0.001). Of note, the LSTM model achieved an accuracy
of 0.987, AUC of 0.997, and precision, recall, and F1 score of 0.952, 0.870, and 0.909, respectively, in detecting
STEMI.

...................................................................................................................................................................................................
Conclusions We demonstrated the usefulness of an LSTM model in the multi-labelling detection of both rhythm classes and

STEMI in competitive testing against board-certified physicians. This AI tool exceeding the cardiologist-level per-
formance in detecting STEMI and rhythm classes on 12-lead ECG may be useful in prioritizing chest pain triage and
expediting clinical decision-making in healthcare.
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Introduction

Cardiovascular disease is the leading cause of death due to non-
communicable disease globally,1 with ischaemic heart disease
accounting for the largest number of deaths among cardiovascular
diseases. Acute ST-segment elevation myocardial infarction (STEMI),
one of the most serious ischaemic heart diseases, is a medical emer-
gency, which requires early diagnosis to initiate timely coronary
reperfusion therapy to reduce morbidity and mortality. The resting
12-lead electrocardiogram (ECG) is a simple and non-invasive tool
that is routinely used to screen for many cardiovascular diseases
including rhythm disorders and acute STEMI. However, accurate
interpretations of 12-lead ECGs by primary care physicians, including
emergency physicians and internists, are often limited due to a lack of
experience and knowledge as compared to those of cardiologists.
Accordingly, a delay in providing appropriate patient triage and timely
interventional therapies could occur worldwide in daily practice.

Computerized diagnosis has been used to assist the interpretation
of ECGs to improve clinical efficiency. However, the sensitivities and
specificities of different computerized algorithms for the detection of
STEMI range 0.62–0.93 and 0.89–0.99, respectively, which vary signifi-
cantly and remain to be improved.2,3 This aforementioned yet unmet
need has motivated researchers to develop rapid and reliable ECG
diagnostic algorithms for STEMI to initiate early life-saving interven-
tion. Recently, artificial intelligence (AI) using machine learning or
deep learning technologies have revolutionized traditional diagnostic
procedures in medical practice, particularly in the automatic

interpretation of medical images, such as mammographs,4 chest X-
rays,5,6 ultrasound,7 and magnetic resonance imaging.8 For cardiovas-
cular images, deep learning has been developed to interpret the
results of ECG, echocardiography, coronary computed tomography,
and single-photon emission computed tomography for the evaluation
of myocardial perfusion.9

The usefulness of machine learning technology in detecting differ-
ent cardiac arrhythmias has been shown to surpass the performance
of conventional computerized ECG diagnosis reaching the cardiolo-
gist’s performance level.10 The most common AI-based approaches
for identifying different heart rhythms were based on annotating
single-lead ECG tracings in previous studies,10,11 which provided lim-
ited information as compared with 12-lead ECG signals.
Furthermore, it remains challenging for an AI model to interpret all
different types of rhythm disorders on 12-lead ECG signals, and for
multi-label diagnosis. Additionally, STEMI from ECG signals is more
difficult than the identification of arrhythmias because a higher detec-
tion sensitivity and essential 12-lead ECG signals for machine learning
are both required.12 Zhao et al.12 developed a machine learning-
based diagnostic algorithm to identify STEMI using 12-lead ECG sig-
nals with a sensitivity of 97% and specificity of 99% which outper-
formed a commercial auto-diagnostic model. However, this AI-based
algorithm was solely designed to identify whether the ECG signal was
STEMI or not STEMI.

In a real-world scenario, a 12-lead ECG usually may contain mul-
tiple diagnostic features including both electrical and structural infor-
mation. Compared to the single-labelling model that can only classify
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.one specific ECG pattern, in multi-labelling classification, each ECG
sample can be associated with multiple labels. The objective of the
current study was to develop a machine learning-based algorithm
with multi-labelling capability that could identify both STEMI and 12
different heart rhythm disorders using 60 537 clinical 12-lead ECG
signals for training, validation, and internal testing. We also conducted
real-world clinical testing for external validation, which compared the
performance of the AI model with that of board-certified physicians
of different specialties, including cardiologists, emergency physicians,
and internists. We believe that the results of the current study may
further advance the utility of AI-based approaches in assisting the
diagnosis of clinically relevant cardiovascular diseases from 12-lead
ECGs.

Methods

Data collection and labelling
In this study, we retrieved 12-lead ECG data reflecting normal sinus
rhythm (NSR) and 12 types of cardiovascular diseases, which included
acute STEMI, rhythm disorders and conduction defects. We retrieved
the 12-lead ECGs which have been diagnosed by 37 experienced board-
certified cardiologists and stored in the digital ECG database of China
Medical University, Taichung, recorded between 15 January 2009 and 31
December 2018 for machine learning. The 12-lead ECG was recorded
according to a standardized protocol and lead position at a sampling rate
of 500 Hz using a computerized ECG machine (GE Healthcare MAC
2000/3500/5500, USA).13 The ECG machine recorded 10-s resting 12-
lead ECG signals, which were extracted in Extensible Markup Language
(XML) format and converted into arrays of numerical values. Rhythm dis-
orders included atrial fibrillation (AFIB), atrial flutter (AFL), atrial prema-
ture beat, ventricular bigeminy (BIGEMINY), ectopic atrial rhythm (EAR),
paroxysmal supraventricular tachycardia (PSVT), sinus tachycardia (ST),
and ventricular premature beat, and conduction defects included com-
plete heart block (CHB), first degree AV block (FRAV), and second de-
gree AV block (SAV). Because 2 to 1 AV block could either be Mobitz

type 1 or Mobitz type 2 AV block,14 we therefore decided to use a
broader definition of SAV in this study. The digital ECG was transmitted
and stored at the ECG core laboratory of CMUH. In total, 72 647 12-
lead ECGs were retrospectively retrieved in an extensible markup lan-
guage (XML) format. The study protocol was reviewed and approved by
the Research Ethics Committee of China Medical University Hospital
(CMUH109-REC2-076).

We preprocessed the ECG data before model training. All ECGs of
the 12 types of cardiovascular disease and NSR were confirmed by
board-certified cardiologists before the study. ECGs were excluded for
the following reasons: duplicate data (n = 3111), incomplete information
regarding patient age or age less than 18 years old (n = 1673), absence of
a definite diagnosis (n = 6759), and ECG examination not performed at
CMUH (n = 567) (Figure 1). A total of 60 537 ECGs from 35 981 patients
were included in this study, which were separated into training, validation,
and testing sets at a ratio of 7:2:1 for developing the proposed AI model.
Thus, all the ECG signals including those for the internal test were con-
firmed and labelled by experienced cardiologists before starting the re-
search. The mean age of patients was 65.06 ± 17.9 years, and 44% of
them were female.

Table 1 presents the number of 12-lead ECGs used for training, valid-
ation, and internal testing for each of the 12 cardiac rhythms and acute
STEMI. A total of 1889 STEMI ECGs diagnosed by board-certified cardiol-
ogists before the study were divided into 1344 ECGs for algorithm train-
ing, 338 ECGs for validation, and 207 ECGs for internal testing. Among
the 13 ECG diagnoses, AFIB had the largest ECG sample size of 16 366
signals to generate 11 430, 3348, and 1588 signals for training, validation,
and testing, respectively. EAR had the smallest sample size with 346 ECG
samples, which were divided into 247, 69, and 30 samples for the training,
validation, and testing sets, respectively.

The distribution of the multi-labelling tasks is shown in Table 2. Multi-
labelling means that one ECG might contain more than one diagnosis
labels. The label counts ranged from 0 to 4. Zero was for the ECG signals
that did not belong to any of the 12 heart rhythm classes or acute STEMI
analysed in the current study, and 4 was for those which contained four
of the 13 ECG labels. Of all the 60 537 signals used in this study, 91.032%
of them (55 108 samples) contained one of the 13 ECG labels, and there

72647 Collected ECG

69536 ECG

60537 ECG

3111 Excluded
1.ECG data were duplicated

9192 Excluded
1.Without complete information of age or 
age less than 18 years old (n=1673)
2.Without definite ECG diagnosis (n=6759)
3.ECG were not performed in China 
Medical University Hospital (n=567)

42391 for 
AI training

12109 for 
algorithm 
validation

6037 for 
internal test

Figure 1 Data collection and labelling. In total, 72 647 12-lead electrocardiograms were retrospectively retrieved. Electrocardiograms with dupli-
cate data (n = 3111), incomplete information of age or age less than 18 years old (n = 1673), absence of definite diagnosis (n = 6759), and those not
performed at China Medical University Hospital (n = 567) were excluded. The remaining 60 537 electrocardiogram signals from 35 981 patients
were included in this study.
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..were 4262 (7.040%), 176 (0.291%), and 4 (0.007%) samples with two,
three, and four types of the 13 ECG diagnoses, respectively.

Proposed deep learning model and internal

test
Recurrent neural network (RNN) is a special neural network structure,
which can pass the output of a certain layer back to the layer itself as in-
put, so it is suitable for processing data of a sequential nature, such as
ECG. The long short-term memory (LSTM) model is an improved ver-
sion of the conventional RNN with four major components: memory
cell, input gate, output gate, and forget gate. Using certain mathematical
functions, these cells and gates allow information to be propagated from
one layer to the next in the neural network in ways that the information
can be discarded in whole or in parts, or updated anew to retain and
propagate only the information gained during the learning process.
Previous studies have shown the feasibility and performance of the LSTM
architecture in dealing with ECG signals15,16 and more technical details of
LSTM can be found in the references therein. The bidirectional LSTM
model used in our previous study for the single-label detection of the
same 12 rhythm classes17 was extended in the present work. The activa-
tion function was modified to be sigmoid and 13 different labels were

used in the output dense layer to enable multi-label detection. A diagram
of the model architecture used in the current study is shown in Figure 2.

The model’s main hyperparameter settings included binary cross-
entropy as the loss function, Adam optimizer with 0.001 learning rate,
128 batch size, and 75 epochs. Accuracy, F1, precision, and recall were
used as metrics to monitor training and validation results. The internal
test set was part of the data collected (n = 6536) and was used to assess
the AI model’s performance after completion of model’s training and
validation.

Comparative test (external test)
To establish the comparative test dataset, we randomly retrieved 12-lead
ECGs of the pre-specified 13 diagnosis labels in which the diagnoses had
been confirmed by cardiologists. The selected ECGs were randomly pre-
sented to three experienced cardiologists for a consensus labelling to
serve as ground truth. To determine the minimal sample size required to
detect differences of 13 ECG patterns by the LSTM model, we per-
formed a power analysis.18 Assuming the averaged accuracy of each
group in annotating the 13 ECG classes (with >_10 positive labels in each
class) ranging between 0.55 and 0.9 according to our previously published
data,17 a minimal testing annotation number of 317 was required to reach

....................................................................................................................................................................................................................

Table 1 Data set for training, validation, and testing of the LSTM model

No. Type of ECG diagnoses Abbreviation ECG

no. total

ECG no.

training

ECG no.

validation

ECG no.

testing

1 Acute ST-elevation myocardial infarction Acute STEMI 1889 1344 338 207

2 Atrial fibrillation AFIB 16 366 11 430 3348 1588

3 Atrial flutter AFL 5953 4164 1189 618

4 Atrial premature beat APB 5685 4004 1107 574

5 Ventricular bigeminy BIGEMINY 1812 1275 366 171

6 Complete heart block CHB 398 277 79 42

7 Ectopic atrial rhythm EAR 346 247 69 30

8 First-degree AV block FRAV 2719 1903 534 282

9 Normal sinus rhythm NSR 9258 6511 1815 932

10 Paroxysmal supraventricular tachycardia PSVT 3681 2560 740 381

11 Second-degree AV block SAV 803 569 166 68

12 Sinus tachycardia ST 11 718 8167 2416 1135

13 Ventricular premature beat VPB 4892 3430 954 508

Total 65 520 45 863 13 121 6536

AV, atrioventricular; ECG, electrocardiogram; LSTM, long short-term memory.

................................... ................................... ................................... ....................................

....................................................................................................................................................................................................................

Table 2 Distribution of multi-labelling analysis

Label counts Total Training set Validation set Testing set

Data no. % Data no. % Data no. % Data no. %

0 987 1.630 900 2.123 54 0.446 33 0.547

1 55 108 91.032 38 567 90.979 11 042 91.188 5499 91.088

2 4262 7.040 2821 6.655 961 7.936 480 7.951

3 176 0.291 102 0.241 51 0.421 23 0.381

4 4 0.007 1 0.002 1 0.008 2 0.033

Total 60 537 100 42 391 100 12 109 100 6037 100
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a statistical power of >0.80. Therefore, collection of ECGs for external
test was completed when the amount of ECGs with multi-labelling testing
annotations exceeded the minimum required number of 317 with at least
10 positive labels for each class. Following this strategy, 308 ECGs were
collected from both CMUH (n = 154) and Asia University Hospital
(n = 154). All the ECGs, and the diagnosis labels, for the external test
were not included in the original testing set. The three experienced com-
mittee members simultaneously annotated all the 308 computerized
ECGs one by one and the consensus of each ECG diagnosis was used as
the ground truth for external testing. After completing the ground truth
annotations, the external test was carried out 4 days later with four other
cardiologists, three internists, and three emergency physicians being
tested simultaneously at the designated room to interpret the 308 ECGs
using a web-based online system as described previously.17 A closed-
domain online platform was set up for doctors to label the 308 12-lead
ECGs’ data (http://private.ip/ecgtest/). The platform page was prepared in
advance by staff before the physicians arrived at the designated room. All
participating physicians received a full explanation of the rules and dem-
onstration of the web-based testing if necessary before starting the test.
The 308 test ECG records were shown in random order to each of the
physicians after they entering their personal identification number and
clicking the Get Data button. The physicians could actively click any index
ECG number to retrieve the first 12-lead ECG recording. The next 12-
lead ECG, randomly picked by algorithm, jumped out automatically after
clicking the ‘Submit’ button when finishing annotation of the first ECG.

Figure 2 Algorithm processing and developing. We used a bidirectional, four-layer LSTM model, with each layer containing 128 neurons. It, input
gate; Ot, output gate; Ft, forget gate; r, logistic sigmoid function; Xt, input sequence; Ht-1. Wxi, Wxo, Wxf, Wxc, and Whi, the previous block output;
Who, Whf, Whc, weight parameters; bi, bo, bf, bc, bias parameters; �Ct, candidate memory cell similar to the three gates but using a tanh activation
function; Ct-1, the previous LSTM block memory; Ht, the final block output. AFIB, atrial fibrillation; AFL, atrial flutter; APB, atrial premature beat;
BIGEMINY, ventricular bigeminy; CHB, complete heart block; EAR, ectopic atrial rhythm; FRAV, first degree AV block; LSTM, long short-term mem-
ory; NSR, normal sinus rhythm; PSVT, paroxysmal supraventricular tachycardia; SAV, second degree AV block; ST, sinus tachycardia; STEMI, ST-seg-
ment elevation myocardial infarction; VPB, ventricular premature beat.

.................................................................................................

Table 3 Diagnostic performance of the LSTM model
for 12 individual heart rhythms and acute STEMI

ECG diagnoses Accuracy AUC Precision Recall F1

Acute STEMI 0.983 0.957 0.818 0.652 0.726

AFIB 0.942 0.985 0.887 0.892 0.890

AFL 0.946 0.955 0.779 0.662 0.716

APB 0.966 0.979 0.854 0.777 0.814

BIGEMINY 0.998 0.987 0.944 0.977 0.960

CHB 0.997 0.999 0.795 0.738 0.765

EAR 0.996 0.939 0.706 0.400 0.511

FRAV 0.979 0.978 0.826 0.691 0.753

NSR 0.973 0.959 0.889 0.939 0.913

PSVT 0.984 0.992 0.883 0.856 0.869

SAV 0.994 0.977 0.837 0.529 0.649

ST 0.968 0.990 0.916 0.915 0.916

VPB 0.978 0.981 0.878 0.852 0.865

AFIB, atrial fibrillation; AFL, atrial flutter; APB, atrial premature beat; AUC, area
under curve; BIGEMINY, Ventricular bigeminy; CHB, complete heart block; EAR,
ectopic atrial rhythm; FRAV, first-degree AV block; LSTM, long short-term mem-
ory; NSR, normal sinus rhythm; PSVT, paroxysmal supraventricular tachycardia;
SAV, second-degree AV block; ST, sinus tachycardia; STEMI, ST-elevation myo-
cardial infarction; VPB, ventricular premature beat.
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Their performance against the ground truth was compared to that of

the LSTM model. We also compared AI performance with diagnosis
based on a commercial algorithm (Data management software MUSETM,
GE Healthcare, USA). The study protocol for the comparative test was
reviewed and approved by the Research Ethics Committee of CMUH
(CMUH109-REC3-020).

Statistical analysis
As in our previous study,17 accuracy, the area under the curve (AUC),
precision, recall (sensitivity), and F1 score were used to evaluate model
performance in both internal and external tests. The accuracy, precision,
and recall of each ECG annotation were respectively calculated according
to the following formula:

Accuracy ¼ True Positveþ True Negative
True Positiveþ False Negativeþ True Negativeþ False Positive

The accuracy of each rhythm class and STEMI presented was the aver-
aged accuracy value from all ECG signals in that particular class annotated
by the proposed AI model as well as the comparators.

Precision ¼ True Positve
True Positiveþ False Positive

Recall ¼ True Positve
True Positiveþ False Negative

Figure 3 Two representative electrocardiograms in the external testing. (A) The long short-term memory model, all of the four cardiologists, one
of the three emergency physicians, and the commercial algorithm correctly classified the electrocardiogram as second degree AV block and acute
STEMI, whereas two emergency physicians and all of the three internists annotated either second degree AV block or ST-elevation myocardial infarc-
tion but not both for this electrocardiogram. (B) The long short-term memory model correctly classified the electrocardiogram as BIGEMINY and
first degree AV block, while most doctors (8 of the 10 physicians) and the commercial algorithm only annotated BIGEMINY but not first degree AV
block. Abbreviations for the electrocardiogram diagnoses as in Figure 2.
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F1 metric (F1 score) was calculated from the precision and recall of the
test, which was a harmonic mean of recall and precision to see the per-
formance of the model. The formula of F1 is shown as follows:

F1 ¼ 2� precision�recall
precisionþ recall

Furthermore, a confusion matrix was used to analyse the differences
between the model prediction and ground truth for each of the 13 types
of ECG patterns. To assess the multi-labelling performance in compara-
tive testing, each of the 13 ECG diagnoses was classified as correct or in-
correct against the ground truth, resulting in a total of 359 annotations of
the 13 ECG patterns from 308 12-lead ECG recordings. The Mann–
Whitney U test was performed to investigate differences in AUC be-
tween the different groups of physicians and the LSTM model in the com-
parative test. Statistical analyses were performed using IBM SPSS
Statistics version 22 (IBM, Armonk, NY, USA) or R (version 3.6.2) and
Python (version 3.8) as appropriate.

Results

Table 3 represents the performance of the LSTM model for the classi-
fication of the 12 heart rhythms and acute STEMI, where the accura-
cies of the LSTM model ranged between 0.942 and 0.998. The
accuracy, AUC, precision, recall, and F1 score of the LSTM model in
detecting acute STEMI were 0.983, 0.957, 0.818, 0.652, and 0.726, re-
spectively. The accuracies of the LSTM model in detecting
BIGEMINY, CHB, EAR, SAV were all higher than 0.990 with the high-
est accuracy of 0.998 for BIGEMINY. The proposed model achieved
an AUC of >0.955 for all rhythm classes, which ranged from 0.955
for AFL to 0.999 for CHB. The precision and recall of the LSTM
model in detecting the 12 heart rhythm classes ranged from 0.706 to
0.944 and from 0.400 to 0.977, respectively. The F1 scores, which
represent the harmonic mean of the precision and recall of the LSTM
model in detecting the 12 heart rhythm classes, ranged from 0.511
for EAR to 0.960 for BIGEMINY.

In external testing, we compared the accuracy, AUC, precision, re-
call, and F1 score of the LSTM model with those of a commercial
ECG algorithm and different broad-certified doctors (four cardiolo-
gists, three emergency physicians, and three internists) for classifying
the 12 heart rhythms and acute STEMI using another 308 randomly
collected ECGs. The LSTM model essentially outperformed board-
certified physicians and the commercial algorithm (Supplementary

material online, Table S1). Taking four types of important cardiovas-
cular disease as an example: for detecting AFIB, the AUC of the
LSTM model was 0.991, which was higher than the mean AUC of
0.960, 0.810, 0.890, and 0.805 respectively for cardiologists, internists,
emergency physicians, and the commercial algorithm; for detecting
CHB, the AUC of the LSTM model was 0.999, which was superior to
the mean AUC of 0.942, 0.799, 0.780, and 0.650 respectively for car-
diologists, internists, emergency physicians, and the commercial algo-
rithm; and for detecting PSVT, the AUC of the LSTM model was
0.998, which was greater than the mean AUC of 0.929, 0.799, 0.837,
and 0.902 respectively for cardiologists, internists, emergency physi-
cians, and the commercial algorithm. Of note, the AUC of the LSTM
model for detecting acute STEMI was 0.997, which was also higher
than the mean AUC of 0.905, 0.826, 0.919, and 0.984, respectively
for cardiologists, internists, emergency physicians, and the commer-
cial algorithm. Two representative ECGs in the external testing are
shown in Figure 3. Taking all 13 ECG diagnoses together, the overall
mean AUC of the LSTM model (0.987± 0.021) was superior to that
of cardiologists (0.898 ± 0.113, P < 0.001), emergency physicians
(0.820± 0.134, P < 0.001), internists (0.765 ± 0.155, P < 0.001), and
the commercial algorithm (0.845 ± 0.121, P < 0.001) (Table 4).
Figure 4 and Supplementary material online, Figure S1 depict the indi-
vidual AUCs and accuracies of the 13 ECG patterns for the LSTM
model in comparison to those for the board-certified physicians of
varying specialties and the commercial algorithm in detecting acute
STEMI and 12 heart rhythms.

To assess the multi-labelling performance in comparative testing,
each of the 13 ECG diagnoses may appear alone (single labelling,
n = 260) or in combination with other classes (multi-labelling, n = 99)
on an ECG recording, resulting in a total of 359 class annotations
from 308 ECG recordings for the external test. Table 5 shows the
accuracies of single labelling and multi-labelling for STEMI and 12
heart rhythm classes (including AV blocks) of the LSTM model in the
external testing. The diagnoses on each of the 308 ECGs by the pro-
posed AI model and the comparators were classified as correct or in-
correct against the ground truth for comparison. The accuracies of
single labelling and multi-labelling for STEMI and 12 heart rhythms
were in general similar or only a few hundredths off except for FRAV.
Of the 308 ECGs for external testing, 8 ECGs were STEMI only and
15 ECGs were STEMI co-existing with rhythm disorders. Accuracies
of single labelling for STEMI and multi-labelling for STEMI co-existing
with rhythm classes were 0.9962 and 0.9375, respectively. The accu-
racies, sensitivities, specificities, and F1 scores of single labelling and
multi-labelling for STEMI are shown in the Supplementary material
online, Table S2. The representative STEMI ECG images of false nega-
tive cases missed by humans and the computer in the external test
are presented in Figure 5.

Discussion

The strengths of the current study include (i) use of a large amount of
clinically collected 12-lead ECG data (60 537 ECGs) for machine
learning to generate a novel AI model capable of multi-label diagnosis;
(ii) demonstration of the effectiveness of the AI model in detecting
12 cardiac rhythms and acute STEMI, surpassing the performances of
a commercial algorithm and board-certified physicians including

.................................................................................................

Table 4 Performance by area under curve (AUC) for
the proposed model, board-certified doctors, and the
commercial algorithm for 308 testing ECGs

Groups AUC P-valuesa

LSTM model 0.987 ± 0.021 reference

Board-certified doctors

Internists 0.765 ± 0.155 <0.001

Emergency physicians 0.820 ± 0.134 <0.001

Cardiologists 0.898 ± 0.113 <0.001

Commercial algorithm 0.845 ± 0.121 <0.001

aMann–Whitney U test.
LSTM, long short-term memory.
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Figure 4 Performance of the long short-term memory model and different groups of board-certified doctors in detecting acute ST-elevation myo-
cardial infarction and different heart rhythms. These are the accuracies and receiver operating characteristic curves in detecting (A) ST-elevation
myocardial infarction (B) atrial fibrillation (C) complete heart block (D) paroxysmal supraventricular tachycardia of our artificial intelligence model
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cardiologists, emergency physicians, and internists in a real-world ex-
ternal validation test; and (iii) the ultrafast and accurate auto-
diagnosis capability of the AI model will be useful in prioritizing chest
pain triage and expediting the clinical decision-making process for pri-
mary percutaneous coronary intervention (PCI).

AI-based approach for detection of acute
STEMI
Acute STEMI is a medical emergency resulting in high morbidity and
mortality that requires timely and accurate diagnosis to initiate early
reperfusion therapy. Thus the current guidelines suggest that the
time from first medical contact-to-device should be <_90 min for
STEMI patients to undergo primary PCI, and the door-to-balloon
time should be within 60 min in primary PCI-capable institutes.19–21

A 12-lead ECG is a key diagnostic tool for identifying acute STEMI.
Therefore, a number of AI-based automatic diagnostic tools have
been developed to facilitate timely and precise ECG diagnosis of
STEMI. Although the performance of most of these computerized
algorithms has an accuracy, sensitivity, specificity, and F1 score >0.9,
the usefulness of the AI models has not been confirmed in a clinically
relevant scenario. Recently, Zhao et al. employed a Res-Net AI algo-
rithm to detect STEMI or not STEMI and found that the AI model
performance was better than the average performance of 15 medical
doctors including cardiologists, medical residents, and medical interns
using a dataset of 667 STEMI ECGs and 7571 control ECGs for algo-
rithm development; and 50 STEMI and 50 non-STEMI ECGs for clin-
ical testing. In the current study, we developed a multi-labelling LSTM
model by using a dataset of 65 520 ECGs including 1889 STEMIs,
along with 63 631 ECGs with 12 cardiac rhythms, to develop an algo-
rithm capable of annotating not only STEMI but also rhythm classes.
Of note, coexistence of STEMI with one or more rhythm classes
appears to have a comparable accuracy rate with single labelling
STEMI diagnosis in our study (0.9375 vs. 0.9962). Further large-scaled
studies are needed to confirm this finding. The performance of the
LSTM model was tested against three groups of board-certified
physicians including four cardiologists, three internists, and three
emergency physicians using 308 ECGs, where the physicians eval-
uated the ECGs in a web-based testing environment at the same
place and time. We believe that the multi-labelling design of our AI
model and its superiority in performance over primary care physi-
cians shows that it performs at a clinically useful level in the auto-
diagnosis of STEMI from 12-lead ECG.

Recent guidelines recommend that a 12-lead ECG should be trans-
mitted to physicians who take care of patients suspected of having
STEMI in a timely manner.22 However, primary physicians, including
emergency doctors and internists, may not have similar level of ex-
perience as cardiologists in interpreting STEMI ECG, leading to an un-
intentional delay in STEMI diagnosis. The current study showed that
the overall accuracy rate in interpreting STEMI ECG was 0.962 for

internists, 0.973 for emergency physicians, 0.971 for the commercial
algorithm, 0.982 for cardiologists, and 0.987 for the LSTM model.
The results provide evidence reinforcing the importance of the active
participation of cardiologists in a team to expedite the diagnosis of
acute STEMI. Since the data indicate that the performance of the
LSTM model was superior to that of cardiologists, the AI-based ap-
proach can be a useful alternative in providing timely and accurate
diagnosis of STEMI in clinical practice. Furthermore, the performance
of our LSTM model in identifying STEMI ECG was far superior to that
of the commercial algorithm. All these findings support the notion
that the AI-based approach, which reaches a cardiologist-level in diag-
nosing STEMI based on ECG on an all-day basis, is a useful tool in
accelerating the triage of patients presenting with chest pain, and may
play a role in preventing avoidable delay in STEMI patients undergoing
reperfusion therapy.

AI model capable of multi-labelling to de-
tect rhythm classes and STEMI
Accumulating evidence has demonstrated the feasibility and efficacy
of using deep learning technologies to classify and detect common
cardiac arrhythmias based on single-lead or 12-lead ECG signals.10,12

The MIT-BIH arrhythmia database23 is the most common single-lead
ECG dataset used for machine learning approaches to classify cardiac
rhythms based on ECG signal fragments from a small number of

.................................................................................................

Table 5 Accuracies of single labelling and multi-label-
ling for STEMI and 12 heart rhythms of the LSTM
model

ECG

diagnoses

Accuracy of single

labelling (n 5 260)

Accuracy of

multi-labelling

(n 5 99)

Acute STEMI 0.9962 (n = 8) 0.9375 (n = 15)

AFIB 0.9577 (n = 46) 0.9792 (n = 2)

AFL 0.9577 (n = 18) 1.0000 (n = 0)a

APB 0.9846 (n = 17) 0.9167 (n = 16)

BIGEMINY 0.9962 (n = 21) 1.0000 (n = 4)

CHB 0.9885 (n = 8) 0.9792 (n = 2)

EAR 0.9462 (n = 17) 0.9375 (n = 5)

FRAV 0.9808 (n = 15) 0.8125 (n = 20)

NSR 0.9462 (n = 32) 1.0000 (n = 0)a

PSVT 0.9846 (n = 27) 1.0000 (n = 0)a

SAV 0.9692 (n = 31) 0.9167 (n = 5)

ST 0.9769 (n = 14) 0.9792 (n = 14)

VPB 0.9923 (n = 6) 0.9375 (n = 16)

Abbreviations for the ECG diagnoses are as in Table 1.
aThe diagnostic class did not appear in the multi-labelling ECGs; thus, the accur-
acy means the true negative rate.

and the results of a commercial algorithm and different groups of doctors in the comparative external tests. The orange line was the receiver operat-
ing characteristic curve of the long short-term memory model. The different colour points represent different groups of board-certified doctors. AI,
artificial intelligence; CV, cardiologists; ER, emergency physicians; LSTM, long short-term memory; MR, internists; abbreviations for the electrocardio-
gram diagnoses are as in Figure 2. Only the four important classes, discussed in the main text are shown here, the rest was presented in
Supplementary material online, Figure S1.

Figure 4 (continued)
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patients. Hannun et al.10 developed a useful deep neural network
(DNN) model to classify 12 rhythm classes, using 91 232 single-lead
ECGs from a large sample of patients with a high overall accuracy
rate surpassing the average performance of cardiologists. Recently,
we employed an LSTM model using 65 932 12-lead ECG signals from
38 899 patients to detect 12 cardiac rhythms with superior overall
performance when compared with the performance of cardiologists,
internists, and emergency physicians in a clinical testing competi-
tion.17 However, all of these AI models were only able to classify one
specific cardiac rhythm and were not designed to detect other critical
or potentially life-threatening cardiac diseases, such as acute myocar-
dial infarction or ventricular fibrillation.

Recently, Mostayed et al.24 developed a deep learning approach to
detect the ECG changes of ST elevation or depression in addition to
classifying seven rhythm disorders using the China Physiological
Signal Challenges (CPSC) dataset. The model can only detect one

class of ECG and was not tested in a clinically relevant scenario.
Recently, Chen et al.25 employed a convolutional neural network
(CNN) model to classify both rhythm disorders and ST changes using
the CPSC dataset. Although this model appears to be able to detect
both single and multiple ECG classes, the design of the model was
not primarily for the multiple labelling of ECG classes and was not
specific for detecting STEMI-related ST elevation. Similarly, their
model was not tested against different levels of physicians in a head-
to-head competition in a real-world situation.

In the current study, we developed a specialized LSTM architec-
ture in a deep learning neural network that enabled the AI algorithm
to perform multi-labelling diagnosis to detect 12 rhythm classes and
acute STEMI. The external validation of the AI model against physi-
cians of different specialties, including cardiologist, internists, and
emergency physicians who must interpret 12-lead ECGs during
their daily practice, was carried out as a clinically relevant

Figure 5 The representative ST-elevation myocardial infarction electrocardiogram images of false negative cases missed by humans and the com-
puter in the external test. (A) The artificial intelligence model correctly annotated ST-elevation myocardial infarction, whereas one of the four cardiol-
ogists labelled ‘Not STEMI’ resulting in a false negative annotation. (B) All the four cardiologists correctly diagnosed ST-elevation myocardial
infarction, while the artificial intelligence model annotated ‘Not STEMI’ and it was counted as a false negative.
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.
competition. The overall performance of the AI model on 13
ECG diagnoses evaluated by AUC was superior to that of board-
certified internists, emergency physicians, and cardiologists. With
the ultrafast annotation time of the AI (4 s for 308 12-lead
ECGs) compared to a much longer interpretation time (69–146
min for board-certified physicians), we believe that this approach
may expedite the diagnostic process for computerized 12-lead
ECG interpretation, leading to more effective patient triage, thus
accelerating decision-making for subsequent interventions, particu-
larly for patients with acute STEMI.

Limitations
This study has several limitations. First, neither the pre-labelled
STEMI ECGs for machine learning nor the STEMI ECGs used for ex-
ternal testing were verified based on coronary angiographic findings
or levels of cardiac enzyme elevation. There could have been some
false positive computer reported cases of STEMI. However, the an-
notation of 12-lead ECG as acute STEMI was according to inter-
national gold standard criteria26 judged by board-certified
cardiologists who would make the decision whether to perform pri-
mary PCI based on the diagnostic criteria for acute STEMI, i.e. (i) typ-
ical/atypical symptoms of chest pain; (ii) 12-lead ECG findings; and
(iii) cardiac enzyme elevation, but not coronary angiography. It should
be noted that given a 12-lead ECG fulfilling the diagnosis of acute
STEMI, coronary angiography may disclose no culprit coronary
lesions, which can be due to a variety of causes, such as coronary ar-
tery spasm, acute pericarditis, Takotsubo cardiomyopathy, or spon-
taneous reperfusion.27,28 We believe that it is clinically relevant to
select typical STEMI ECGs as labelled by board-certified cardiologists
for machine learning to develop a cardiologist-level AI model, such as
the current algorithm, to accelerate the triage of patients with acute
chest pain. Second, our LSTM model was trained to detect whether
there was STEMI present or not, which included different STEMI pat-
terns such as anterior, lateral, inferior, and other STEMIs. Of the
1889 ECGs of STEMI in the training and validation sets, 470 ECGs
were anterior STEMI (24.9%), 86 ECGs were lateral STEMI (4.6%),
704 ECGs were inferior STEMI (37.3%), 587 ECGs were combination
of anterior, lateral or inferior STEMI (31.1%), and 42 ECG were other
STEMIs (2.2%). It is a limitation that the LSTM model was not trained
to identify different STEMI patterns. However, in clinical practice, the
most important procedure after identifying STEMI is to arrange
emergency PCI irrespective of the different types of STEMI. We will
train the LSTM model to identify different types of STEMI in the fu-
ture. Third, we did not specifically incorporate 12-lead ECGs with
baseline drifting, motion artefacts, or electromagnetic interference as
input data for training. Therefore, the current AI model may not
work in patients with the aforementioned ECG noise. Fourth, the
current LSTM model was not designed to annotate more complex
ECG patterns, such as those in patients with wide QRS complex
rhythms, bundle branch block, ventricular tachycardia/fibrillation,
multifocal atrial tachycardia, junctional rhythm, and wandering atrial
pacemaker, primarily because we did not have a sufficient number of
these ECGs for machine learning thus far. Indeed, further efforts
should be devoted to improving our model in differentiating complex
wide QRS tachycardias in the future. Fifth, class unbalancing might
have bias in training the AI model. Because the prevalence of certain

cardiac arrhythmias such as EAR and CHB was relatively uncommon
in our patient cohort, we were not able to collect the same numbers
of ECGs for all classes from our digital ECG database. To reduce the
bias caused by class unbalancing, we have assigned different class
weights to the 13 types of ECG diagnoses in the training program to
ensure the training efficacy of classes (e.g. EAR and CHB) with limited
ECG signals. With this approach, we found that, the accuracies of the
LSTM model on EAR and CHB with a relatively lower ECG number
for training were actually comparable to those of some ECG classes
with a much higher ECG number, such as AFIB, in the internal and
the external tests. Lastly, it is possible that there are more limitations
not mentioned above to the current study. For example, it is difficult
to moderate electrode position in every recording, the ideal dimen-
sionality remains to be defined, there are still other important diagno-
ses not included in the algorithm, i.e. old myocardial infarction etc.
And of course the AI model is still a black box lacking explainability.
Indeed, further improvement in the AI modelling is still needed to
tackle the aforementioned limitations.

Conclusions

We demonstrated the usefulness of an LSTM AI model in multiple
labelling to detect both rhythm classes and acute STEMI using a large
quantity of 12-lead ECG signals by conducting competitive testing
against board-certified physicians. This AI-based approach exceeding
an average performance of cardiologists in the auto-diagnosis of
STEMI ECGs on an all-day basis may be a useful tool in expediting the
triage process in patients presenting with acute chest pain, and may
play a role in preventing delay for reperfusion therapy in STEMI
patients.

Supplementary material

Supplementary material is available at European Heart Journal is avail-
able at online.
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